Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking.

نویسندگان

  • James F Sturgill
  • Pascal Steiner
  • Brian L Czervionke
  • Bernardo L Sabatini
چکیده

The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes receptors, ion channels, structural, and signaling proteins necessary for synaptic function. To study the stabilization of proteins within this structure and the contribution of these proteins to the integrity of the PSD, we tagged synaptic proteins with PAGFP (photoactivatable green fluorescent protein) and used combined two-photon laser-scanning microscopy and two-photon laser photoactivation to measure their rate of turnover in individual spines of rat CA1 pyramidal neurons. We find that PSD-95 is highly stable within the spine, more so than other PSD-associated proteins such as CaMKIIalpha, CaMKIIbeta, GluR2, and Stargazin. Analysis of a series of PSD-95 mutants revealed that distinct domains stabilize PSD-95 within the PSD and contribute to PSD formation. Stabilization of PSD-95 within the PSD requires N-terminal palmitoylation and protein interactions mediated by the first and second PDZ domains, whereas formation of a stable lattice of PSD-95 molecules within the PSD additionally requires the C-terminal SH3 domain. Furthermore, in a PDZ domain 1 and 2 dependent manner, activation of NMDA receptors with a chemical long-term depression protocol rapidly destabilizes PSD-95 and causes a subset of the PSD-95 molecules previously anchored in the spine to be released. Thus, through the analysis of rates of exchange of synaptic PSD-95, we determine separate domains of PSD-95 that play specific roles in establishing a stable postsynaptic lattice, in allowing proteins to enter this lattice, and in reorganizing this structure in response to plasticity-inducing stimuli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.

The regulated delivery of AMPA-type glutamate receptors (AMPARs) to synapses is an important mechanism underlying synaptic plasticity. Here, we ask whether the synaptic scaffolding protein PSD-95 (postsynaptic density 95) participates in AMPAR incorporation during two forms of synaptic plasticity. In hippocampal slice cultures, the expression of PSD-95-green fluorescent protein (PSD-95-GFP) inc...

متن کامل

PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down.

Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPA receptor (AMPAR) abundance are incompletely understood. Furthermore, it remains unclear to what extent scaling up and scaling down use distinct molecular machinery. PSD-95 is a scaffold...

متن کامل

Destabilization of the Postsynaptic Density by PSD-95 Serine 73 Phosphorylation Inhibits Spine Growth and Synaptic Plasticity

Long-term potentiation (LTP) is accompanied by dendritic spine growth and changes in the composition of the postsynaptic density (PSD). We find that activity-dependent growth of apical spines of CA1 pyramidal neurons is accompanied by destabilization of the PSD that results in transient loss and rapid replacement of PSD-95 and SHANK2. Signaling through PSD-95 is required for activity-dependent ...

متن کامل

Synaptic targeting of the postsynaptic density protein PSD-95 mediated by a tyrosine-based trafficking signal.

Synaptic function requires proper localization of proteins at synaptic sites. Targeting of the postsynaptic density protein 95 (PSD-95) relies on multiple signals within the protein, including twelve C-terminal amino acids. We now show that this C-terminal targeting domain of PSD-95 mediates postsynaptic localization through a short tyrosine-based motif followed by a pair of hydrophobic amino a...

متن کامل

Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand.

Interactions between NMDA receptors (NMDARs) and the PDZ [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] domains of PSD-95/SAP90 (synapse-associated protein with a molecular weight of 90 kDa) family proteins play important roles in the synaptic targeting and signaling of NMDARs. However, little is known about the mechanisms that regulate these PDZ domain-mediated interactions. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 41  شماره 

صفحات  -

تاریخ انتشار 2009